
Enabling Security Research through Efficient Partial
Deployment Topology Configuration and Validation

1st Bashayer Alharbi
University of Colorado - Boulder

Boulder, USA
bashayer.alharbi@colorado.edu

2nd Karl Olson
University of Colorado - Boulder

Boulder, USA
karl.olson@colorado.edu

3rd Eric Keller
University of Colorado - Boulder

Boulder, USA
eric.keller@colorado.edu

Abstract—How to measure security value in partial deploy-
ments has long been a consideration for the Internet research
community. Without clear security outcomes, adoption of security
mechanisms may take years before users begin to see any benefit.
This lack of clarity can serve to further delay adoption as
incentives to implement are often outweighed by additional costs
or complexity. While prior efforts have looked at theoretical
approaches to estimate this critical mass of partial deployment
within a topology, no effort has been able to effectively simulate
and measure such an outcome. In this work, we provide an
early effort to demonstrate how topology simulation can be used
to effectively deploy and measure partial deployments of RPKI
utilizing the SEED Internet Emulator. Our efforts show that this
approach can be used to simulate large networks and provide an
effective means to measure partial deployment value of security
protocol deployments. Further, we demonstrate that adoption
rates of greater than fifty percent begin to show exponential
return on security outcomes for both adopters and non-adopters
alike.

Index Terms—Internet Simulation, RPKI, Partial Deployment

I. INTRODUCTION

The Internet is central to every aspect of modern life, yet
it’s main protocol, the border gateway protocol (BGP), is ripe
for attack. This can be seen in a variety of recent attacks
and demonstrations of its vulnerabilities [12]–[14] where an
attacker is able to hijack an IP prefix. What this means is they
would be able to influence the traffic destined to that prefix -
e.g., intercepting it for a man-in-the-middle attack, directing
it to a blackhole for a denial of service attack, or forwarding
to a server under the attacker’s control to impersonate a
particular address. This can reduce anonymity in systems like
Tor [16], influence cryptocurrency in systems like Bitcoin [15],
or disrupt services like Youtube [17].

In response, a number of security protocols have been
introduced to thwart these attacks [10], [19], [25]. The resource
public key infrastructure (RPKI) [10], has gained the most
traction and provides a protection known as route origin
authentication (ROA). With RPKI, the owner of an IP prefix
address block can sign a certificate with a private key, and
share that with a central authority who will store that certificate
along with a public key in a database. Network operators can
download that database to a local server, known as a validator,
which will validate all entries in the downloaded data. Through
an RPKI to Router (RTR) protocol with local routers, these

prefixes can be cached in that local router such that when it
receives a BGP update message, it can look in the database
to see if the given prefix is valid (and, e.g., discard the bad
announcement).

One challenge with RPKI, and all of the other proposed
Internet security solutions, is that its effectiveness is highly
dependent on how widely deployed it is. While there were
some theoretical studies around effectiveness in partial de-
ployments [20], and a request for comments process that
allowed stakeholders to voice concerns, RPKI wasn’t really
evaluated with real routers until network operators started
deploying it in production networks. Fortunately, some experi-
mental frameworks have been introduced which leverage con-
tainerization to emulate larger scale network topologies. For
example, Containernet [7] allows an experimenter to describe
a network topology of hosts and switches in Python, and it will
launch a container for each. Experimenters can configure the
switches (e.g., using software-defined networking protocols),
run software on the hosts, and generate traffic. The SEED
Internet Emulator [2], took a similar concept but also allows
running routing software (e.g., BIRD [21]), and automatically
configuring the routers based on higher level information (e.g.,
this autonomous system is an internet exchange and peers
with a specified set of autonomous systems). However, these
experimental frameworks are still missing one important ca-
pability - being able to effectively evaluate partial deployment
of Internet security protocols.

In this paper, we extend the SEED Internet emulator frame-
work to enable partial deployment evaluation of RPKI (and
other routing protocols with small extensions). In particular,
we: (i) enable the automatic deployment and configuration of
RPKI in an autonomous system (Section II), (ii) provide a
programmatic API to enable experimenters to create a variety
of scenarios of partial deployment, and introduce metrics to
define effectiveness of a given scenario and provide means
to measure those metrics programmatically (Section III), and
(iii) use this extended testing framework to evaluate the
effectiveness of RPKI, as an example, in a variety of partial
deployment scenarios on a mini scale Internet (Section IV).
Our results show that partial deployment simulations can be
programmatically conducted and measured to help inform
when adopters/non-adopters can begin to see large security
value resulting from deployments. With RPKI in particular,

we find that an adoption rate over 50% is necessary before ex-
ponential security value is begins to present within a topology
(where non-participants are likely to begin to see the benefits
in addition to the adopters). Both the approach and results
show value for future security research efforts and help provide
clarity to partial deployment value.

II. AUTOMATED RPKI EMULATION

Conducting large-scale network research is challenging at
best as hardware costs can quickly become prohibitive, even
for small-scale topologies. For this reason, hardware emulation
through software has been used to replicate network devices
efficiently within a local simulation environment. Efforts such
as GNS-3 [1], NSA’s Greybox [3], Boson’s Netsim [5],
and Eve-NG [4] are just a few common examples where
device emulation can be used to replicate physical topologies.
However, pure hardware emulation still requires a significant
investment in compute resources to maintain large networks as
each device emulated requires its own allocation of resources
from the local host. Further, emulated devices often require
their own individual configuration to establish the right con-
nections, routing, and topology goals, making experiments that
require significant topology configuration changes challenging
at best.

To address these limitations, platforms which simulate net-
working devices do so by replicating the operation of network-
ing protocols, which are then run in a lightweight container
or host. Efforts such as Mininet [6], Containernet [7], and the
recent SEED Internet Emulator (SIE) [2] follow this approach,
relying on the Linux kernel for networking support. In the
cases of Containernet and SIE, these devices are then deployed
via lightweight Docker containers which are then networked
together to provide a lightweight simulation environment.
Configuration of individual devices within a network topology
are further enabled by programming abstractions that can
quickly define configurations through associated C or Python
libraries.

A. Configuring SIE to use RPKI

In order to enable the large-scale change necessary to
efficiently measure partial deployment scenarios, we relied
on the SEED Internet Emulator. While originally designed to
provide a networking environment for security education [2],
the lightweight containerization of networking nodes and use
of Python classes to represent internet elements allows for
quick scripting of networking topologies at any scale. Further,
the use of Docker containers allows for simulation of hundreds
of nodes on a single host and can be further scaled to a cloud
environment for even larger topologies, making it an ideal
platform to perform large scale testing of experiments that
require significant topology changes.

By default, SIE provides a number of routing protocols
and common host templates (router, web server, PC host,
DNS, etc.) to deploy. We were able to incorporate additional
elements into this platform, such as introducing RPKI, through
a number of small configuration changes. First, we modified

Topology
Script.py
Topology
Script.py

Docker-Compose.yml

Router Docker Files

Base Layer
Definitions

Service Layer
Definitions Routing Topology w/

Services
(1) (2) (3) (4)

Fig. 1. Topology Deployment Process (1) A set of Python classes is used
to define a base layer of devices and connections. An additional services
layer is then defined to establish individual services necessary for each device
(e.g. web server, DNS, etc.) (2) A topology script is run to generate Docker
configuration files for each device along with a Docker-compose file, which
will be used to deploy the overall topology. Within the topology script is a
designator for a defined percentage of devices to operate RPKI randomly. (3)
The Docker-compose file is run and deploys the experiment topology. (4) The
topology is active and ready to inject a malicious advertisement and measure
resulting outcomes.

the included /seedemu/compiler/Docker.py compiler
to create an RPKI server template. When deployed, this
template would create a server which installed the NLnet
Labs Routinator software [8] and established the initial con-
figuration which routers could use to validate RPKI data.
Second, we modified the /seedemu/layers/Ebgp.py
configuration template for the birdc BGP routing daemon to
include an optional configuration for routers that we wanted
to run RPKI on. If a router was selected to use RPKI, all
associated configurations and setups would be done to connect
to our RPKI server using this template. Last, we modified
/seedemu/utilities/Makers.py to implement RPKI
on routers as an additional configuration element for the SIE
topology configuration script. This included a random selector
used to define a target percentage for RPKI deployment.

B. Creating and Deploying an Environment

To create our test topologies, SIE relies on the concept
of layering to establish and define a network and associated
services. A simple workflow to establish an environment is
shown in Figure 1. First a base layer defines the devices and
connections between them. These may be routers, internet
exchanges, hosts, or other elements of a network topology. As
part of this base layer, routing and neighbor relationships are
also defined through a simple Python script which identifies
a device and then configures network peerings and linkages
through a simple definition, as shown in Figure 2. Second, a
services layer adds any additional services to a base device.
These are again specified as part of the Python configuration
script, but only after a host has been created on the base layer
for these services to run on.

Once a topology configuration script is established, the SIE
compiler builds the associated Docker configuration templates
for each host with the specified services and configurations.
A docker-compose.yml template is also built to orches-
trate the deployment of each container into a single operational
environment and handle the underlying networking configu-
ration between each container. Changes to the environment
can quickly be integrated by adjusting the toplogy script, re-
compiling to update the Docker container template(s), and

Create and set up the stub AS (AS-153)
and attach to IX101 with one web server,
two hosts, and random RPKI selection.
Makers.makeStubAs(emu, base, 153, 101,
[web, None, None],rpki[5])

Fig. 2. Topology Definition Example Establishment of devices within
a topology follow a simple configuration pattern. First, a base layer is
defined where the object will apply. Second, a number is given to define
the autonomous system, in this case AS153. We then define where this AS
will connect to, in this case IX101. Any additional hosts/services that should
be deployed off of the AS router can be specified within the final argument.
In this example, three hosts are deployed with one being a webserver. Last,
we added an RPKI identifier statement that would either be True or False
in order to determine whether or not a device should be operating RPKI in
our tests. Additional configuration templates exist for transit AS’s, peering
relationships, and real-world routers.

Fig. 3. Deploying Larger Topologies A sample larger topology view used to
measure partial deployment of RPKI. Topology contains a mix of internal and
external routing protocols, internet exchanges, host systems & services, along
with a number of independent Autonomous Systems used to measure attack
propagation. Color coding marks the various separate Autonomous networks
for easy identification. Less than 40 LoC were used to define a topology of
69 devices hosting various services such as real world connectivity, an RPKI
server, routing, peering relationships, web servers, and hosts.

finally updating the associated container(s). A further benefit
of this approach is that we could save pre-configured topology
scripts and quickly rebuild the containers for deployment
in as little as a few minutes, allowing for efficient testing
and modification of experiments, regardless of topology size.
Demonstration of this scalability is shown in Figure 3.

III. ENABLING PARTIAL DEPLOYMENT EXPERIMENTS

Measuring the security benefit of a partially deployed secu-
rity protocol required an efficient mechanism to both deploy

(1) (2)

(3) (4)

Fig. 4. Measuring Partial Deployment of RPKI (1) Topology of routers
and services is defined and deployed in simulated environment. (2) Target
percentage of RPKI deployment is selected and configured. (3) False route info
injected into topology and allowed to propagate. (4) Routing tables checked
for inclusion of bad routes and topology is graphed to measure overall effect.

and correctly configure the targeted solution on some subset
of available hosts. For our security mechanism, we chose to
implement RPKI, due to its favor by IANA as a preferred
BGP security solution and its growing deployment in real-
world topologies [9], [10]. RPKI works to limit the acceptance
and propagation of bad BGP routes by validating that a route
advertisement is associated with the true owner and that they
have advertised the route. By detecting bad routes (malicious
hijacks or misconfiguration), a router utilizing RPKI can
prevent a bad route from entering their routing table and
possibly re-directing traffic away from the intended source.
By preventing this route acceptance, downstream routers can
also be protected from a bad route as the update would never
propagate past the validating router. For this reason, RPKI
provides potential benefits to non-participating routers making
it an ideal choice for measuring partial deployment security.

To implement the partial deployment of RPKI into our
network topology we implemented a random sample selector
into the SIE topology configuration script that could be tuned
to reflect a given percentage of devices. Devices selected
at random would be configured to operate RPKI while the
rest would remain as standard BGP routers. By introducing
this selector we could quickly adjust a topology to reflect
any percentage of RPKI deployment while the remaining
configuration elements of each device would be handled by the
underlying structure of the SIE compiler. Saving the compiled
Docker configuration templates allowed for precise replaying
of any scenario, allowing us to further test for edge case
outcomes or to validate experiment outcomes multiple times.

A. Measuring Partial Deployment Outcomes

In order to measure the effect of RPKI and resulting security
afforded by a partial deployment, a series of scripts were
generated to both randomly generate a prefix hijack from a
“rogue” device in the topology and measure the resulting route
propagation post attack, as shown in Figure 4. For post-attack
outcomes we relied on two key measurements, as follows:

Control plane measurements. To measure the impact of
prefix hijacking on the control plane, we developed a script
to pull the routing table information from each router in
the topology and search for the hijacked prefix. From this
information, we could quickly identify the number of affected
routers that had the hijacked routes in their routing tables
and validate that ASes adopting RPKI were not affected.
We followed this measurement by manually validating our
topology results in order to ensure that route propagation
followed a clear and available path through the topology and
was not propagated by devices implementing RPKI.

Data plane measurements. To test the impact of prefix
hijacking on the data plane, we conducted a traceroute from
each router not implementing RPKI to the targeted prefix. If
a router was not affected, the path would take us to our real-
world AS and out to the actual real-world endpoint. If a router
was affected, the routing would end within our topology at the
router conducting the prefix hijack. A script was developed
with the aim of assessing the reachability of each Stub AS to
a valid IP address 8.8.8.8 through the utilization of the ping
and traceroute commands using docker exec. The script
subsequently calculated the number of ASes that were able to
successfully reach the target IP address per each experimental
iteration, providing an effective method for identifying the
devices that were affected in the data-plane.

Repeat simulations were conducted to test for potential
variance in outcomes. In particular we note two key outcomes
of interest that we needed to be aware of: For re-simulated
experiments, all outcomes should remain the same, e.g., for the
same topology and attacking device, the same devices should
be affected post attack. Second, for a given deployment %
of RPKI a series of random topologies and attacking devices
were selected in order to determine if a specific iteration had a
greater or less effect on malicious route propagation. In cases
where outcomes were different based on topology, we note
these differences in our results. We averaged the results in
order to consider the effect of edge cases for our test topology
(we discuss these cases further in the Discussion section.)

B. Experiment Workflow

In order to conduct repeatable experiments, each iteration
of a partial deployment measurement used the following
procedure:

1) Define topology % for RPKI deployment
2) Run SEI compiler to build environment
3) Save a copy of the environment for re-use
4) Deploy environment and validate topology operation
5) Conduct attack
6) Extract topology routing tables
7) Model and measure outcomes
8) Repeat experiment to test for variances
By following this procedure, the only changes we would

need to make for testing partial deployment security is defining
a new percentage of devices that would host RPKI and
redeploying the experiment with the new configuration. All
other procedures would be handled through automated scripts

to both conduct an attack and measure the resulting routing
tables to determine attack propagation and defense within a
given topology.

C. Preventing Accidental Exposure

Since our topology used real-world connectivity through a
single AS, we needed to ensure that external route information
was propagated into our simulation environment but that no
actions or mis-configurations would have an external effect. By
default, the SIE provides this isolation through a combination
of VPN configurations (for external devices to reach into the
simulation) and use of importing real-world route announce-
ments into the sim from a real-world AS (for devices to reach
outward). When combined, these two implementations provide
for a simulation boundary that acts like it is connected to
the real-world, but is in fact separated through management
abstractions which prevent announcement of internal routes
due to no actual peering being performed with a real-world
router. This would allow us to test hijacking of real-world
prefixes that both did and did not use RPKI, but within the
protected environment of our simulation.

IV. RESULTS

For our measurements, we considered RPKI deployment
scenarios ranging from 10% - 90% deployment, conducted in
20% intervals. 0% and 100% measurements were conducted
specifically to validate topology operation and outcomes as-
sociated with each (we discuss separately below). Within this
deployment a random autonomous system not within the RPKI
deployment selection was chosen to initiate a route-hijack
for our target prefix of 8.8.8.0/25. We chose this prefix due
to its known ownership and registration in the ARIN RPKI
database and for our ability to utilize a longer, more specific
prefix from the true subnet mask of 8.8.8.0/24. All experiments
were conducted on a CloudLab [11] node using the modified
SEED mini-internet.py topology, which incorporated
our changes for establishing various deployment scales of
RPKI. This topology simulated a total of 69 devices containing
a mix of transit ASes, stub ASes, internet exchange points, and
end-hosts.

After conducting our prefix hijack, we then pulled each
router’s routing table and checked for propagation of our
chosen prefix. A total count of affected systems allowed
for correlation between RPKI deployment percentage and
resulting overall topology security (defined as either routers
having direct avoidance through implementation of RPKI or
through downstream protection of devices not running RPKI
but protected by the upstream router.) Results correlating
RPKI deployment to adoption of the malicious prefix hijack
are shown in Figure 5. Of note are the significant security
benefits found when a topology breaks the 50% deployment
mark due to the higher likelihood of non-participants receiving
protection from upstream RPKI routers. This is further demon-
strated at the 70% deployment mark where nearly every router
avoided adopting the malicious route.

Fig. 5. Control Plane Measurements Measuring the impact of prefix
hijacking on the control plane over different RPKI adoption rates.

Fig. 6. Data Plane Measurements Percentage of data plane traffic able
to route to true owner and not malicious hijacker. It was discovered that a
combination of topology layout and random selection of routers not deploying
RPKI would allow for hijacking of traffic despite broader RPKI deployment.

As confirmation for our control plane assessment, we further
conducted traces from each router to the targeted “valid”
host located at 8.8.8.8/24. If a router had RPKI enabled, we
expected these routers to successfully reach the valid host.
What we discovered was a significant mismatch between the
control plane and data plane for topologies that implemented
a low RPKI deployment percentage, as shown in Figure 6.
The reason for this outcome we discovered was upstream
routers that were not utilizing RPKI accepted the malicious
advertisement and routed the corresponding traffic towards
the malicious host. Updates sent by these routers would be
rejected by the RPKI systems as they would see these updates
as “INVALID” and maintain their original route information.
We provide a detailed overview of this outcome next.

A. Data-plane Routing Mismatch

While a BGP router’s control plane is used to select and
maintain routes, the actual path a packet may take can differ
from this control-plane information due to either misconfig-
uration, routing anomalies, or malicious action [23]. In one
estimate, as much as 8% of global routes present a mismatch
between the control and data plane [24]. In considering the
potential for these differences, we further conducted a post-
hijack assessment utilizing a series of traceroutes to confirm
equivalent routing behavior between both the data and control
plane. What we found were instances where a router may
utilize RPKI and populate the correct information in their
routing table, but transit across an AS affected by a hijack

Fig. 7. Data-Plane Routing Mismatch (1) AS152 operates RPKI and has
a valid route (green path) to 74.80.186.0/24 through ASN150 (4) to the real-
world connection (2). (3) ASN151 acts as a hijacker and advertises a longer
sub-prefix of 74.80.186/25. (4) ASN150 accepts the bad prefix to ASN151
due to no local implementation of RPKI. ASN152 (1) traffic ends up routing
to attacker even though a valid RPKI route is in the local routing table. Note:
This is a reduced size topology to highlight an example. Similar occurrences
were found in our larger simulation topology.

that results in different routing behavior. In our experiments,
this resulted in traffic being re-directed to an attacker even
though the local AS was correctly populating route data to
the true host. A demonstration of this outcome is shown in
Figure 7.

This has a number of concerning implications. First, this
puts into question the value of RPKI as a security mechanism
for route origin validation if the underlying routing data-plane
behavior does not match. This can provide false assurances
to operators, making actual hijacks harder to identify through
control plane assessments. Second, this shows the importance
of early adoption by up-stream service providers to integrate
RPKI due to their out-sized role in enabling broader security
outcomes. Third, while RPKI is not a path validation solution,
the need for path validation in conjunction with RPKI is
still a valid need. While efforts such as BGPsec provide this
capability, it requires significant adoption before broad value
can be realized. This is due to the requirement of all routers
needing to implement BGPsec along a given path, otherwise
the standard reverts to removing the path-validation in absence
of full participation [25].

V. DISCUSSION

A significant challenge in the adoption of security protocols
is defining the immediate value for early adopters. Lack of
incentives or a clear operational value can hinder deployments,
stagnating security goals until a critical mass is reached. How-
ever, defining where this critical mass may lie is rarely clear.
These challenges are especially prevalent on the Internet as
autonomous systems are independently managed by operators
who may not readily adopt new network complexities. This
is readily observed in the adoption of RPKI where after ten
years of availability still remains at less than 30% adoption
globally [9].

By demonstrating the value of a partial deployment sce-
nario for RPKI over multiple adoption scenarios, we provide
a programmatic approach that demonstrates a measurable
outcome to security deployments. Further, our solution is
protocol agnostic and can easily be reconfigured to test future
security mechanisms with minimal configuration in the SIE
environment.

One limit of our current approach is related to the small
topology used at present. The largest simulation we conducted
replicated 69 devices consisting of a mix of routers, hosts,
and switches, used to provide a complete testing environment.
Of these 69 devices, only 26 devices represented routers for
15 distinct autonomous systems, of which six were transit
networks. The low sampling, combined with a single external
network exit, provided for outcomes where potentially as few
as four devices running RPKI could provide 100% coverage
to the entire topology. We are careful to consider these results
and have worked to provide measurements that average these
edge cases over a number of experiments. However, our
broader intent here is to demonstrate the workings of the
approach used. In a future work we plan to significantly
scale the simulated environment to accommodate thousands
of autonomous systems utilizing a number of exit points that
can serve as an operational test-bed for other researchers.

VI. FUTURE WORK

SIE has shown to be a very versatile platform for conducting
Internet emulation and assessments. We plan to further extend
the results of this early work in a number of ways with future
efforts. In particular, we would like to see how far the platform
could take us towards realizing a 1:1 scale network simulation
platform. We note that a number of opportunities for further
efficiencies exist within the current SIE environment that could
further reduce container overhead requirements, allowing for
reasonably large scales (a few thousand devices) of simulation
being performed on a single host. This would enable a number
of research efforts where access to large test-bed platforms is
either too costly or complicated to scale efficiently.

While SIE has a separate compiler that is able to build
a Google Teraform deployment environment, we have only
minimally validated its operation. We would like to combine
the effort to minimize container overhead with this cloud
environment to see how far we could get to achieving a full
internet topology simulation. Given the ability of the SIE
emulator to import real-world routing table information, we
believe this data could be used to automate the container
deployment and topology creation.

VII. CONCLUSION

Communicating the value of security mechanisms can be
hard to convey to operators, who often consider the added
complexity and cost as detriments to adoption. This is es-
pecially true for early adopters who may not immediately
realize the benefits until a critical mass of deployments are
reached. In this work we show how measuring the adoption
of RPKI across partial deployment scenarios can help inform

the community of where this critical mass may lie, serving
to answer the question: ”When will I see the benefit?”. We
further demonstrated a programmatic approach to building
and simulating network topologies efficiently so that other
mechanisms can be validated and compared in support of
security research for the Internet community.

REFERENCES

[1] Graphical Network Simulator-3. https://www.gns3.com/.
[2] Du, W., Zeng, H., Won, K. (2022, November). SEED Emulator: An

Internet Emulator for Research and Education. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks (pp. 101-107).

[3] National Security Agency Graybox Program.
https://www.nsa.gov/business/programs/greybox/.

[4] EVE-NG: the Emulated Virtual Environment For Network, Security and
DevOps Professionals. https://www.eve-ng.net

[5] Boson NetSim Network Simulator. https://netsim.boson.com/.
[6] Mininet. http://mininet.org/.
[7] Containernet. https://containernet.github.io/.
[8] NLNetLabs Routinator. https://nlnetlabs.nl/projects/rpki/routinator/.
[9] NIST RPKI Deployment Monitor. https://www.nist.gov/services-

resources/software/nist-rpki-deployment-monitor.
[10] Internet Assigned Numbers Authority Resource Public Key Infrastruc-

ture. https://www.iana.org/assignments/rpki/rpki.xhtml.
[11] CloudLab. https://www.cloudlab.us
[12] Truth Behind the Celer Network cBridge cross-chain bridge incident:

BGP hijacking. https://medium.com/coinmonks/truth-behind-the-
celer-network-cbridge-cross-chain-bridge-incident-bgp-hijacking-
52556227e940

[13] Maria Apostolaki, Aviv Zohar, Laurent Vanbever. Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies. IEEE Symposium on Security and
Privacy. May 2017.

[14] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer
Rexford, Mung Chiang, Prateek Mittal. RAPTOR: Routing Attacks on
Privacy in Tor. USENIX Security. August 2015.

[15] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

[16] Roger Dingledine, Nick Mathewson, Paul Syverson. Tor: The Second-
Generation Onion Router. Usenix Security. 2004.

[17] YouTube Hijacking: A RIPE NCC RIS case study.
https://www.ripe.net/publications/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study

[18] Matthew Lepinski, Kotikalapudi Sriram. RFC 8205: BGPsec Protocol
Specification. https://www.rfc-editor.org/rfc/rfc8205.html

[19] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure
Border Gateway Protocol (S-BGP) — Real World Performance and
Deployment Issues. Proceedings of the Network and Distributed System
Security Symposium (NDSS). February 2000.

[20] Robert Lychev, Sharon Goldberg, Michael Schapira. BGP security in
partial deployment: is the juice worth the squeeze? ACM SIGCOMM.
2013.

[21] The BIRD Internet Routing Daemon. https://bird.network.cz/
[22] Feamster, N., Winick, J., & Rexford, J. (2004). A Model of BGP Routing

for Network Engineering. ACM SIGMETRICS Performance Evaluation
Review, 32(1), 331-342.

[23] Wong, E. L., Balasubramanian, P., Alvisi, L., Gouda, M. G., &
Shmatikov, V. (2007, August). Truth in advertising: Lightweight ver-
ification of route integrity. In Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing (pp. 147-156).

[24] Mao, Z. M., Rexford, J., Wang, J., & Katz, R. H. (2003, August).
Towards an accurate AS-level traceroute tool. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols
for computer communications (pp. 365-378).

[25] Austein, R., Bellovin, S., Housley, R., Kent, S., Kumari, W., Mont-
gomery, D., ... & Sriram, K. (2017). RFC 8205-BGPsec Protocol
Specification.

